3.8.4 \(\int \frac {(a d e+(c d^2+a e^2) x+c d e x^2)^{5/2}}{(d+e x)^{5/2}} \, dx\) [704]

Optimal. Leaf size=48 \[ \frac {2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{7/2}}{7 c d (d+e x)^{7/2}} \]

[Out]

2/7*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(7/2)/c/d/(e*x+d)^(7/2)

________________________________________________________________________________________

Rubi [A]
time = 0.01, antiderivative size = 48, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.026, Rules used = {662} \begin {gather*} \frac {2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{7/2}}{7 c d (d+e x)^{7/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2)/(d + e*x)^(5/2),x]

[Out]

(2*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(7/2))/(7*c*d*(d + e*x)^(7/2))

Rule 662

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*(d + e*x)^(m - 1)*
((a + b*x + c*x^2)^(p + 1)/(c*(p + 1))), x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c
*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0]

Rubi steps

\begin {align*} \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^{5/2}} \, dx &=\frac {2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{7/2}}{7 c d (d+e x)^{7/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.03, size = 37, normalized size = 0.77 \begin {gather*} \frac {2 ((a e+c d x) (d+e x))^{7/2}}{7 c d (d+e x)^{7/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2)/(d + e*x)^(5/2),x]

[Out]

(2*((a*e + c*d*x)*(d + e*x))^(7/2))/(7*c*d*(d + e*x)^(7/2))

________________________________________________________________________________________

Maple [A]
time = 0.13, size = 42, normalized size = 0.88

method result size
default \(\frac {2 \sqrt {\left (c d x +a e \right ) \left (e x +d \right )}\, \left (c d x +a e \right )^{3}}{7 \sqrt {e x +d}\, c d}\) \(42\)
gosper \(\frac {2 \left (c d x +a e \right ) \left (c d e \,x^{2}+a \,e^{2} x +c \,d^{2} x +a d e \right )^{\frac {5}{2}}}{7 c d \left (e x +d \right )^{\frac {5}{2}}}\) \(50\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^(5/2),x,method=_RETURNVERBOSE)

[Out]

2/7*((c*d*x+a*e)*(e*x+d))^(1/2)/(e*x+d)^(1/2)*(c*d*x+a*e)^3/c/d

________________________________________________________________________________________

Maxima [A]
time = 0.30, size = 60, normalized size = 1.25 \begin {gather*} \frac {2 \, {\left (c^{3} d^{3} x^{3} + 3 \, a c^{2} d^{2} x^{2} e + 3 \, a^{2} c d x e^{2} + a^{3} e^{3}\right )} \sqrt {c d x + a e}}{7 \, c d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^(5/2),x, algorithm="maxima")

[Out]

2/7*(c^3*d^3*x^3 + 3*a*c^2*d^2*x^2*e + 3*a^2*c*d*x*e^2 + a^3*e^3)*sqrt(c*d*x + a*e)/(c*d)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 92 vs. \(2 (44) = 88\).
time = 1.64, size = 92, normalized size = 1.92 \begin {gather*} \frac {2 \, {\left (c^{3} d^{3} x^{3} + 3 \, a c^{2} d^{2} x^{2} e + 3 \, a^{2} c d x e^{2} + a^{3} e^{3}\right )} \sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e} \sqrt {x e + d}}{7 \, {\left (c d x e + c d^{2}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^(5/2),x, algorithm="fricas")

[Out]

2/7*(c^3*d^3*x^3 + 3*a*c^2*d^2*x^2*e + 3*a^2*c*d*x*e^2 + a^3*e^3)*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e)*
sqrt(x*e + d)/(c*d*x*e + c*d^2)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (\left (d + e x\right ) \left (a e + c d x\right )\right )^{\frac {5}{2}}}{\left (d + e x\right )^{\frac {5}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(5/2)/(e*x+d)**(5/2),x)

[Out]

Integral(((d + e*x)*(a*e + c*d*x))**(5/2)/(d + e*x)**(5/2), x)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 469 vs. \(2 (44) = 88\).
time = 6.04, size = 469, normalized size = 9.77 \begin {gather*} \frac {2}{105} \, {\left (c^{2} d^{2} {\left (\frac {{\left (15 \, \sqrt {-c d^{2} e + a e^{3}} c^{3} d^{6} - 3 \, \sqrt {-c d^{2} e + a e^{3}} a c^{2} d^{4} e^{2} - 4 \, \sqrt {-c d^{2} e + a e^{3}} a^{2} c d^{2} e^{4} - 8 \, \sqrt {-c d^{2} e + a e^{3}} a^{3} e^{6}\right )} e^{\left (-2\right )}}{c^{3} d^{3}} + \frac {{\left (35 \, {\left ({\left (x e + d\right )} c d e - c d^{2} e + a e^{3}\right )}^{\frac {3}{2}} a^{2} e^{6} - 42 \, {\left ({\left (x e + d\right )} c d e - c d^{2} e + a e^{3}\right )}^{\frac {5}{2}} a e^{3} + 15 \, {\left ({\left (x e + d\right )} c d e - c d^{2} e + a e^{3}\right )}^{\frac {7}{2}}\right )} e^{\left (-5\right )}}{c^{3} d^{3}}\right )} e^{\left (-1\right )} - 14 \, a c d {\left (\frac {{\left (5 \, {\left ({\left (x e + d\right )} c d e - c d^{2} e + a e^{3}\right )}^{\frac {3}{2}} a e^{3} - 3 \, {\left ({\left (x e + d\right )} c d e - c d^{2} e + a e^{3}\right )}^{\frac {5}{2}}\right )} e^{\left (-2\right )}}{c^{2} d^{2}} + \frac {3 \, \sqrt {-c d^{2} e + a e^{3}} c^{2} d^{4} - \sqrt {-c d^{2} e + a e^{3}} a c d^{2} e^{2} - 2 \, \sqrt {-c d^{2} e + a e^{3}} a^{2} e^{4}}{c^{2} d^{2}}\right )} e^{\left (-1\right )} + 35 \, a^{2} {\left (\frac {{\left ({\left (x e + d\right )} c d e - c d^{2} e + a e^{3}\right )}^{\frac {3}{2}} e^{\left (-1\right )}}{c d} + \frac {\sqrt {-c d^{2} e + a e^{3}} c d^{2} - \sqrt {-c d^{2} e + a e^{3}} a e^{2}}{c d}\right )} e\right )} e^{\left (-1\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^(5/2),x, algorithm="giac")

[Out]

2/105*(c^2*d^2*((15*sqrt(-c*d^2*e + a*e^3)*c^3*d^6 - 3*sqrt(-c*d^2*e + a*e^3)*a*c^2*d^4*e^2 - 4*sqrt(-c*d^2*e
+ a*e^3)*a^2*c*d^2*e^4 - 8*sqrt(-c*d^2*e + a*e^3)*a^3*e^6)*e^(-2)/(c^3*d^3) + (35*((x*e + d)*c*d*e - c*d^2*e +
 a*e^3)^(3/2)*a^2*e^6 - 42*((x*e + d)*c*d*e - c*d^2*e + a*e^3)^(5/2)*a*e^3 + 15*((x*e + d)*c*d*e - c*d^2*e + a
*e^3)^(7/2))*e^(-5)/(c^3*d^3))*e^(-1) - 14*a*c*d*((5*((x*e + d)*c*d*e - c*d^2*e + a*e^3)^(3/2)*a*e^3 - 3*((x*e
 + d)*c*d*e - c*d^2*e + a*e^3)^(5/2))*e^(-2)/(c^2*d^2) + (3*sqrt(-c*d^2*e + a*e^3)*c^2*d^4 - sqrt(-c*d^2*e + a
*e^3)*a*c*d^2*e^2 - 2*sqrt(-c*d^2*e + a*e^3)*a^2*e^4)/(c^2*d^2))*e^(-1) + 35*a^2*(((x*e + d)*c*d*e - c*d^2*e +
 a*e^3)^(3/2)*e^(-1)/(c*d) + (sqrt(-c*d^2*e + a*e^3)*c*d^2 - sqrt(-c*d^2*e + a*e^3)*a*e^2)/(c*d))*e)*e^(-1)

________________________________________________________________________________________

Mupad [B]
time = 3.16, size = 79, normalized size = 1.65 \begin {gather*} \frac {\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}\,\left (\frac {6\,a^2\,e^2\,x}{7}+\frac {2\,c^2\,d^2\,x^3}{7}+\frac {2\,a^3\,e^3}{7\,c\,d}+\frac {6\,a\,c\,d\,e\,x^2}{7}\right )}{\sqrt {d+e\,x}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(5/2)/(d + e*x)^(5/2),x)

[Out]

((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)*((6*a^2*e^2*x)/7 + (2*c^2*d^2*x^3)/7 + (2*a^3*e^3)/(7*c*d) + (6
*a*c*d*e*x^2)/7))/(d + e*x)^(1/2)

________________________________________________________________________________________